Световая фаза фотосинтеза. Фотофизический этап. Электронно-возбужденное состояние пигментов. Представление о фотосинтетической единице. Антенные комплексы. Реакционные центры. Преобразование энергии
Страница 2

Фотосинтез растений » Световая фаза фотосинтеза. Фотофизический этап. Электронно-возбужденное состояние пигментов. Представление о фотосинтетической единице. Антенные комплексы. Реакционные центры. Преобразование энергии

или светособирающих, комплексов

(ССК). Из ламелл хлоропластов выделены светособирающий белковый комплекс с хлорофиллами а

и b

(CCKa-b), тесно связанный с ФС II,

и антенные комплексы, непосредственно входящие в фотосистемы I

и II

(фокусирующие антенные компоненты фотосистем).

В

ССКa-Ь присутствуют хлорофилл а

в двух или трех формах с максимумами поглощения между 660 и 675 нм, хлорофилл b

с максимумом поглощения 650 нм и каротиноиды. В

каждом ССКa-b содержится от 120 до 240 молекул хлорофиллов, причем отношение хлорофилла а

к хлорофиллу b

составляет 1,2—1,4. Половина белка тилакоидов и около 60% общего количества хлорофилла локализовано в ССК. У сине-зеленых и красных водорослей, у которых хлорофилл b

отсутствует, роль ССК выполняют фикобилисомы, в состав которых входят фикобилины.

Антенный белковый комплекс ФС II содержит 40 молекул хлорофиллов а

с максимумами поглощения 670 — 683 нм на один П680 и β-каротин.

Антенный белковый комплекс ФС I состоит из хромопротеинов, содержащих 110 молекул хлорофиллов а

с максимумами поглощения 680 — 695 нм на один П700, из них 60 молекул — компоненты антенного комплекса самой фотосистемы, а 50 входят в состав комплекса, который можно рассматривать как ССК ФС I. Антенный комплекс ФС I также содержит β-каротин.

Хромопротеины антенных комплексов не обладают фотохимической и энзиматической активностью. Если бы каждая молекула хлорофилла преобразовывала поглощенную ею энергию кванта света в фотохимическую реакцию, то такая система была бы крайне нерентабельна. Продолжительность синглетного возбужденного состояния исчисляется 10-12 — Ю-9 с, и даже на прямом солнечном свету 1 квант света поглощается молекулой хлорофилла не чаще одного раза за 0,1 с. Большую часть времени молекула хлорофилла «простаивает». Поэтому роль пигментов антенных комплексов состоит в том, чтобы собирать и передавать энергию квантов на небольшое количество молекул реакционных центров П680 и П700, которые и осуществляют фотохимические реакции. Аналогично отдельные капли дождя ударяют в крышу и, сливаясь, создают постоянный ток воды в водостоке.

Передача (миграция) энергии по пигментам антенных комплексов происходит по принципу индуктивного резонанса

(без флуоресценции и переноса заряда). Природа индуктивного резонанса сострил в следующем. Каждая молекула хлорофилла, поглотившая квант света и перешедшая в синглетное возбужденное состояние, является молекулярным осциллятором. Возникающее вокруг возбужденной молекулы переменное электрическое поле с определенной частотой колебаний индуцирует осцилляцию диполя (электрон — ядро) соседней молекулы. При этом молекула-донор переходит в основное состояние, а молекула-акцептор — в возбужденное. Механической моделью такой резонансной передачи энергии может быть система из двух маятников, связанных слабой пружинкой. Раскачивание одного из маятников вызывает колебания другого и затухание колебаний первого.

Условиями для резонансного переноса энергии электронного возбуждения служат малые расстояния между молекулами, не превышающие 10 нм, и перекрытие частот колебаний у двух взаимодействующих молекул, о чем можно судить по степени наложения спектра флуоресценции возбужденной донорной молекулы и спектра поглощения молекулы-акцептора.

Флуоресценция каждой молекулы-донора имеет более длинноволновый максимум по сравнению с максимумом ее поглощения (в соответствии с правило Стокса) и в большей или меньшей степени перекрывает зону поглощения акцепторной молекулы. Миграция энергии осуществляется от коротковолновых пигментов в сторону все более длинноволновых, т. с. пигментов с более низким уровнем синглетного возбужденного состояния.

В антенных комплексах перенос энергии осуществляется в ряду: каротин (400-550 нм)--► хлорофилл b

(650 нм)--►хлорофиллы a

(660-675 нм)---► П680 (ФС II). Скорость резонансного переноса энергии от молекулы к молекуле 10-10 — 10-9 с, причем эффективность переноса между молекулами хлорофилла достигает 100, а между молекулами каротина и хлорофилла — лишь 40%. У синезеленых и красных водорослей резонансная передача энергии происходит в следующем порядке: фикоэритрин (570 нм)--> фикоцианин

(630 нм)--► аллофикоцианин (650 и 670 нм)--► хлорофилл а

Страницы: 1 2 3 4 5


Прочие статьи:

Происхождение, классификация и территориальное распространение рас
О существовании рас люди знали ещё до нашей эры. Тогда же и были предприняты первые попытки объяснить их происхождение. Стремления систематизировать представления о физических типах народов, населяющих земной шар, датируются XVII веком, к ...

Понятие биологического возраста, его основные критерии
Биологический возраст - возраст развития. Существование индивидуальных колебаний процесса роста и развития послужило основанием для введения этого понятия. При описании основных морфологических особенностей человека в различные периоды ис ...

Зачем нужно изучать нервную систему беспозвоночных
Нервная система беспозвоночных служила ключевым фактором в исследовании огромного диапазона вопросов, посвященных биофизике, клеточным аспектам биологии и развитию нервных клеток. Удивительно, что фундаментальные механизмы развития и функ ...

Разделы