Опытно – экспериментальная часть. Абиотический синтез биомономеров
Страница 1

Материалы по биологии » Современные концепции возникновения жизни » Опытно – экспериментальная часть. Абиотический синтез биомономеров

Синтез аминокислот при действии электрических разрядов в газовой смеси, имитирующей возможный состав примитивной земной атмосферы, был осуществлен еще в 1953 г в широко известных в настоящее время опытах Миллера. Использованный для этой цели прибор Миллера изображён на рис 1. Он состоит из большого круглого сосуда, в котором находится исходная смесь газов и в котором производится электрический разряд, а также малой колбы с кипящей водой - в ней скапливаются получающиеся продукты.

При действии искрового или тихого разряда на смесь СН4, NH3, H2 и паров воды при постоянной (в течение недели) циркуляции смеси в малой колбе были обнаружены глицин, α-аланин, α -аминомасляная и α -аминоиз масляная кислоты, β-аланин, аспарагиновая и глутаминовая кислоты, саркозин и N-СН2-аланин. Промежуточными продуктами этой реакции являлись альдегиды HCN.

Рис. 1. Прибор Миллера для синтеза органических соединений в восстановительной атмосфере под действием искровых разрядов

1 — колба с кипящей водой; 2 — к вакуумному на­сосу; 3 — электроды;

4 — искровой разряд; 5 — смесь газов (СН4,NH3, Н2О, Н2); 6 — выход воды из холодильника; 7 — холодильник; 8 — подача воды в холодильник; 9 — вода, содержащая

органические соеди­нения; 10 — ловушка

Данные Миллера были подтверждены в работе Т. Е. Павловской и А. Г. Пасынского, в которой применялась несколько другая аппаратура, а избыточное количество водорода заменялось на СО. В последующих работах указанных авторов было обосновано положение, согласно которому любая реакция, приводящая к образованию альдегидов и HCN, обязательна должна была способствовать накоплению α -аминокислот в гидросфере первичной Земли.

Эбельсон, используя более сложную исходную смесь газов, включающую наряду с СН4, NH3 и Н2О также) СО, СО2 и N2, получил аналогичную Миллеру смесь аминокислот.

Оро, используя С2- и С3-углеводороды и концентри­рованный NH4OH, дополнил указанный список синтези­рованных в искровом разряде аминокислот лейцином изолейцином и валином.

Гроссенбахер, пропуская искровой разряд в специ­ально сконструированном приборе в течение 100 - 200 час. через смесь NH3, CH4 и Н2, получил в водном ; растворе смесь аминокислот (соотношение в молях): аспарагиновая кислота — 2, треонин — 4, серии—14, гли­цин— 16, аланин—14, лизин — 4, лейцин — 2, изолейцин — 2 и глутаминовая кислота — 1. Кроме того, он обнаружил пептиды, состоящие из глицина и аланина (5:1), а также глицина и изолейцина. К концу опыта продукты полимеризации аминокислот выделялись из раствора в виде мелких многомолекулярных сфер или капель.

Менее многочисленны исследования по синтезу ами­нокислот при воздействии на смесь примитивных газов ионизирующими излучениями. Здесь можно назвать опы­ты Дозе и Раевского, обнаруживших образование кис­лых и нейтральных аминокислот при действии рентгено­вых лучей на газовую смесь СН4, NH3, H2, CO2, N2 и Н2О. При облучении β-лучами от линейного ускори­теля (2 Мэв) растворов ацетата аммония Гассельстромом, Генри и Мурром были получены глицин и аспарагиновая кислота, а при Х-облучении 60Со (5*108 р) твердого карбоната аммония Пашке, Чанг и Янг доказали образование глицина и аланина. Пальм и Кальвин, действуя на смесь метана, аммиака, водорода и паров воды пучком быстрых электронов (5 Мэв при дозе 1010 эрг), синтезировали глицин и аспарагиновую кис­лоту.

Образование аминокислот при простом нагревании исходных растворов было впервые обнаружено Фоксом, Джонсоном и Вегодским. Оро с сотрудниками показал, что ряд аминокислот (глицин, аланин, серии, аспара­гиновая кислота, треонин) получается просто при нагре­вании в течение 40—60 час. водных смесей формаль­дегида и гидроксиламина при 80—100° С или даже при более низких температурах. Аналогичные результаты были получены Левом, Рисом и Маркхемом, которые нагревали 1,5 М водный раствор NH3 и HCN при 90° в течение 18 час. и обнаружили при этом значитель­ное количество аминокислот, частично входящих в пеп­тиды и освобождающихся после гидролиза продуктов реакции (в том числе, кроме глицина, аланина и аспарагиновой кислоты, они получили также лейцин, изолейцин, серии, треонин и глутаминовую кислоту).

Страницы: 1 2


Прочие статьи:

Будущее чайного гриба
Несмотря на все положительные качества и широкое применение в быту, в медицине и биотехнологии чайный гриб используют довольно слабо. Правда, в 1957 году сотрудники Ереванского зооветеринарного института выделили из настоя антибиотики шир ...

Организменные и надорганизменные живые системы
Деление живых систем на организменные и надорганизменные отражает два основных типа их функциональной организации. Это деление по своей сути не имеет адекватных ему альтернатив: как функционально неделимая, генетически первичная живая сис ...

Техника окраски по Граму
На хорошо обезжиренное стекло наносят три тонких мазка разных культур микроорганизмов. Мазки высушивают на воздухе, фиксируют над пламенем горелки и окрашивают в течение 1 мин метилвиолетом. Сливают краситель и, не промывая препарат водой ...

Разделы