Кинетика действия ферментов
Страница 1

Кинетические исследования ферментативных реакций необходимы не только для количественного определения ферментов и сравнения скоростей их функционирования, но, в еще большей степени, для расшифровки механизмов ферментативных реакций. В этих целях, прежде всего, необходимо уметь корректно вычислять кинетические параметры ферментативных реакций, оценивать конкурентный или неконкурентный характер действия ингибиторов. Рассмотрим основные уравнения, описывающие ферментативную кинетику и способы вычислений. Основное внимание будет уделено не строгости математического вывода уравнений, а правильному их использованию для получения достоверных результатов.

При выводе кинетических уравнений количественно характеризующих ферментативную активность, обычно делают следующие допущения.

1. Фермент и субстрат образуют фермент-субстратный комплекс за счет сил физической природы. Из этого комплекса в дальнейшем освобождаются фермент и продукт. Таким образом, химической реакцией является только второй этап – распад фермент-субстратного комплекса:

2. Концентрация субстрата обычно значительно выше концентрации фермента. Поэтому при рассмотрении начальных скоростей реакции, когда

3. Константа диссоциации определяется соотношением:

концентрация продукта очень низка, обратимостью второй стадии можно пренебречь. Следовательно, – const., а скорость образования продукта равна:

Поскольку общая концентрация фермента равна сумме концентраций свободного фермента и фермента, связанного в комплекс, то + или = –.

Подставляя значение [Е] = [Е0] — [ES] из (4), получаем:

С другой стороны, из уравнения следует:

В уравнении выражение к+2 можно рассматривать как максимальную скорость, достигаемую, когда концентрация фермент-субстратного комплекса численно равна общей концентрации фермента. Следовательно:

Выражение есть не что иное, как уравнение Михаэлиса–Ментен для ферментативной кинетики, а величина Кга = Ks представляет собой меру сродства фермента к субстрату. Численно она равна такой концентрации субстрата, при которой начальная скорость ферментативной реакции составляет половину максимальной скорости. Уравнение графически выражается гиперболой.

Для практического определения кинетических параметров этот график неудобен, к тому же требует использования концентраций субстрата, «насыщающих» фермент, что не всегда достижимо при ограниченной растворимости субстрата. Поэтому обычно стремятся преобразовать уравнение Михаэлиса–Ментен в такую форму, чтобы графически оно изображалось прямой линией. Чаще всего для этого используют метод Лайнуивера–Берка, представляя уравнение Михаэлиса–Ментен в виде уравнения прямой линии:

Последнее выражение называют уравнением Лайнуивера–Берка и для расчета кинетических параметров используют график, построенный в координатах: 1/V против 1/S. В результате получается прямая, отсекающая на оси ординат отрезок, равный 1/V, а на продолжении оси абсцисс отрезок, равный – 1/Кга. Однако следует отметить, что при использовании графика Лайнуивера–Берка точки в области высоких концентраций субстрата располагаются слишком густо, а положение прямой линии во многом зависит от точек в области низких концентраций субстрата, где определение скорости менее надежно. Кроме того, реальные экспериментальные данные не всегда адекватно аппроксимируются в виде прямой линии.

Поэтому предложено еще несколько приемов для определения кинетических параметров. Метод Эди–Хофсти также основан на преобразовании уравнения Михаэлиса–Ментен. Умножив обе части уравнения на и преобразовав, получим:

График этого уравнения в координатах V против V/S представляет собой прямую линию, отсекающую на осях ординат и абсцисс отрезки, равные VmaxH Vm>x/ Кго соответственно.

Страницы: 1 2


Прочие статьи:

Класс Гинкговые (Ginkgoopsida) ИЛИ Гинкгопсиды класс
Единственным современным представителем класса гинкговых является реликтовое растение - гинкго двулопастный (Ginkgo biloba). Оно было открыто для науки в 1690 г. в Японии врачом голландского посольства Е. Кемпфером и в 1712 г. описано им ...

Чешуекрылые Астраханской области. Семейство стеклянниц Sessidae
В пределах нашего региона, по неполным данным известно 8 видов стеклянниц: тополевая большая (Paranthrene) , тополевая малая (Sesia apiformis), смородинная (Aegeria tipuliformis), яблонная (A. myopaeformis), муравейная (A. formicaeformis) ...

Сапрофиты как показатели органического загрязнения грунта пещеры
Сапрофиты гетеротрофные организмы, которые непосредственно от других организмов не зависят, но нуждаются в готовых органических соединениях. Они используют продукты жизнедеятельности других организмов или разлагающиеся растительные или жи ...

Разделы