Выводы

Научные исследования физических, химических, биологических явлений, проводившиеся в XX в., существенно расширили, углубили прежние представления о структуре и свойствах материи.

Если на рубеже XIX и XX вв. была известна лишь одна элементарная частица — электрон, то на рубеже XX и XXI вв. количество известных элементарных частиц исчисляется сотнями. Во второй половине XX в. было выяснено, что элементарные частицы, образующие ядра атомов, сами обладают внутренней структурой и состоят из «еще более элементарных» частиц — кварков.

Наряду с успехами в исследовании микромира современная наука имеет значительные достижения и в познании мегамира. В XVIII—XIX вв. и даже в первой половине XX в. господствовала теория стационарной Вселенной, которая представлялась статичной, не изменяющейся в пространстве. Такое понимание во второй половине XX в. было отброшено и заменено теорией расширяющейся Вселенной.

Современная астрофизика внесла много нового в понимание эволюции звезд, открыла совершенно новые, неизвестные ранее космические объекты (пульсары, квазары).

Крупнейшее достижение науки начала XX в. — создание теории относительности — явилось естественно-научным подтверждением важнейшего положения диалектико-материа-листической картины мира о единстве материи, движения, пространства и времени. Творцу теории относительности удалось показать не просто единство, но зависимость свойств пространства и времени от движущейся материи и друг от друга.

Существенно расширились в XX столетии представления и о структурных уровнях органической природы, которые включают молекулярный уровень жизни, клеточный уровень (микроорганизмов, тканей и органов), уровни целого живого организма, сообществ организмов, биологических видов, биогеоценозов (совокупности видов различных организмов в единстве с природными условиями их существования) и, нако­нец, биосферы в целом, т.е. области распространения жизни на Земле.

Если важнейшими доказательствами единства органического мира в XIX в. стали открытие клеточного строения организмов и эволюционная теория Дарвина, то в XX в. такими доказательствами явились открытия в области молекулярных основ наследственности в живой природе.

Прогресс в биологии еще в первой половине XX в. привел к введению понятий гена (как единицы наследственного материала, ответственного за передачу по наследству определенного признака) и хромосомы (как структурного ядра клетки, обозначаемого ДНК и являющегося высокомолекулярным соединением — носителем наследственных признаков). Расшифровка молекулы ДНК в середине XX в. послужила началом интенсивных исследований в области молекулярной биологии, которые к концу XX в. вплотную подвели к расшифровке генома человека.


Прочие статьи:

Бета-экзотоксин, или термостабильный экзотоксин
Представляет собой также очень важный компонент метаболизма бактериальной клетки. По химической природе он близок к нуклеотидам — аденину или урацилу, а некоторые исследователи причисляют его к структурным аналогам аденозинтрифосфорной ки ...

Приложения
Рис.1. Система пяти царств Уиттекера Рис.2. Отличительные признаки основных царств природы ...

Среднее солнечное время
Измерения показывают, что продолжительность истинных солнечных суток на протяжении года неодинакова. Наибольшую длину они имеют 23 декабря, наименьшую 16 сентября, причем разница в их продолжительности в указанные дни составляет 51 секунд ...

Разделы