Электрорецепторы. Как акулы используют закон Ома и теорию вероятностей
Страница 1

Материалы по биологии » Типы рецепторов » Электрорецепторы. Как акулы используют закон Ома и теорию вероятностей

В 1951г. английский ученый Лиссман изучал поведение рыбы гимнарха. Эта рыба обитает в мутной непрозрачной воде в озерах и болотах Африки и поэтому не всегда может для ориентации пользоваться зрением. Лиссман предположил, что эти рыбы, подобно летучим мышам, используют для ориентации эхолокацию.

Удивительная способность летучих мышей летать в полной темноте, не натыкаясь на препятствия, была обнаружена очень давно, в 1793г., т. е. почти одновременно с открытием Гальвани. Это сделал Лазаро Спалланцани — профессор университета в Павии. Однако экспериментальное доказательство того, что летучие мыши издают ультразвуки и ориентируются по их эху, было получено только в 1938 г. в Гарвардском университете в США, когда физики создали аппаратуру для регистрации ультразвука.

Проверив ультразвуковую гипотезу ориентации гимнарха экспериментально, Лиссман отверг ее. Оказалось, что гимнарх ориентируется как-то иначе. Изучая поведение гимнарха, Лиссман выяснил, что эта рыба обладает электрическим органом и в непрозрачной воде начинает генерировать разряды очень слабого тока. Такой ток не пригоден ни для защиты, ни для нападения. Тогда Лиссман предположил, что гимнарх должен обладать специальными органами для восприятия электрических полей — электросенсорной системой.

Это была очень смелая гипотеза. Ученые знали, что насекомые видят ультрафиолет, а многие животные слышат неслышимые для нас звуки. Но это было лишь некоторое расширение диапазона в восприятии сигналов, которые могут воспринимать и люди. Лиссман допустил существование совершенно нового типа рецепторов.

Ситуация осложнялась тем, что реакция рыб на слабые токи в это время была уже известной. Ее наблюдали еще в 1917 г. Паркер и Ван Хойзер на сомике. Однако эти авторы дали своим наблюдениям совсем другое объяснение. Они решили, что при пропускании тока через воду в ней меняется распределение ионов, и это влияет на вкус воды. Такая точка зрения казалась вполне правдоподобной: зачем придумывать какие-то новые органы, если результаты можно объяснить известными обычными органами вкуса. Правда, эти ученые никак не доказывали свою интерпретацию; они не поставили контрольного опыта. Если бы они перерезали нервы, идущие от органов вкуса, так чтобы вкусовые ощущения у рыбы исчезли, то обнаружили бы, что реакция на ток сохраняется. Ограничившись словесным объяснением своих наблюдений, они прошли мимо большого открытия.

Лиссман же, напротив, придумал и поставил множество разнообразных опытов и после десятилетней работы доказал свою гипотезу. Примерно 25 лет назад существование электрорецепторов было признано наукой. Электрорецепторы начали изучать, и вскоре они были обнаружены у многих морских и пресноводных рыб, а также у миног. Примерно 5 лет назад такие рецепторы были открыты у амфибий, а недавно — и у млекопитающих.

Где же расположены электрорецепторы и как они устроены?

У рыб есть механорецепторы боковой линии, расположенные вдоль туловища и на голове рыбы; они воспринимают движение воды относительно животного. Электрорецепторы — это другой тип рецепторов боковой линии. Во время эмбрионального развития все рецепторы боковой линии развиваются из того же участка нервной системы, что и слуховые и вестибулярные рецепторы. Так что слуховые рецепторы летучих мышей и электрорецепторы рыб — близкие родственники.

У разных рыб электрорецепторы имеют разную локализацию — они располагаются на голове, на плавниках, вдоль тела, а также и разное строение. Часто электрорецепторные клетки образуют специализированные органы. Мы рассмотрим тут один из таких органов, встречающихся у акул и у скатов,— ампулу Лоренцини. Лоренцини думал, что ампулы — это железы, вырабатывающие слизь рыбы. Ампула Лоренцини представляет собой подкожный канал, один конец которого открыт в наружную среду, а другой оканчивается глухим расширением; просвет канала заполнен желеобразной массой; электрорецепторные клетки выстилают в один ряд «дно» ампулы.

Интересно, что Паркер, который впервые заметил, что рыбы реагируют на слабые электрические токи, изучал и ампулы Лоренцини, но приписал им совсем другие функции. Он обнаружил, что, надавливая палочкой на наружный вход канала, можно вызвать реакцию акулы. Из таких опытов он сделал вывод, что ампула Лоренцини — это манометр для измерения глубины погружения рыбы, тем более, что по строению орган был похож на манометр. Но и на этот раз интерпретация Паркера оказалась ошибочной. Если акулу поместить в барокамеру и создать в ней повышенное давление,, то ампула Лоренцини на него не реагирует — и это можно нт>едвидетьх не ставя эксперимента: вода давит со всех сторон и никакого эффекта нет *). А при давлении только на пору в желе, которое ее заполняет, возникает разность потенциалов, подобно тому, как возникает разность потенциалов в пьезоэлектрическом кристалле.

Страницы: 1 2


Прочие статьи:

Защита комнатных цветов от вредителей
Прежде всего, с помощью профилактических, предупредительных мер, таких, как: внимательный осмотр имеющихся и вновь приобретаемых растений, изоляция поврежденных цветов от здоровых, дезинфекция посуды и почвы, то есть ее промораживание или ...

Видовой состав
Вид муравьев Рыжий лесной муравей Formica rufa Черный муравей Lasius niger L . Желтый земляной муравей Lasius flavus F . Мирмика рыжая Myrmica laevinodis N . Климатическая зона Лесостепная зона Лес Луг ...

Нервная система и головной мозг
11) Важнейшие органы чувств - органы зрения и слуха. Глаза у них крупные, снабжены верхним и нижним веками и третьим веком, или мигательной перепонкой. Все птицы обладают цветовым зрением. Острота зрения в несколько раз выше, чем у челове ...

Разделы