Во всех слоях эпидермиса содержатся липиды. В базальном слое преобладают фосфолшшды. В гранулярном слое, помимо фосфолипидов, обнаруживается холестерол, жирные кислоты и появляются церамиды. В роговом слое в высокой концентрации содержатся церамиды, высоко содержание жирных кислот и холестерола. Эти гидрофобные липиды ответственны за проницаемость эпидермиса. Фосфолипиды в роговом слое не выявляются.
Следовательно, состав и содержание липидов в процессе ороговения значительно изменяются. Существенно отметить, что синтез липидов и ферментативное расщепление происходят во всех слоях эпидермиса, а их выделение в межклеточные пространства можно рассматривать как секреторный процесс. В глубоких участках рогового слоя липиды образуют прочные комплексы с белком и не выявляются обычными красочными реакциями, а в слущивающейся зоне рогового слоя, благодаря частичному разрушению этих комплексов, и появлению свободных стеринов, липиды выявляются. Среди них преобладает полярный лгатид ацилглюкозилцерамид-сфинголипид, структура и свойства которого определяют барьерную функцию клеток рогового слоя. Углеводы в этих слоях почти не выявляются. Методом дифракции рентгеновских лучей установлено, что межклеточные липиды в роговом слое организованы в двухслойные ламеллярные структуры и содержат в кристаллическом виде холестерол. В верхних зонах рогового слоя происходит разрушение цементирующего клетки материала под действием ферментов, выделяемых кератиносомами. При десульфатировании холестерол-сульфата межклеточные ламеллярные структуры распадаются и начинается слущивание корнеоцитов. Распад мембранных бислоев межклеточных липидов, обусловливающий слущивание, осуществляется под действием стероид-сульфатаз, кислых лапаз и церамидаз, находящихся в роговом слое. Показано, что сульфатированный холестерол участвует в метаболизме экзогенных продуктов, проникающих в эпидермис.
Таким образом, барьерная функция корнеоцитов разнообразна. Наличие барьера, однако, не означает абсолютной непроницаемости эпидермиса для воды и растворов. Бислои липидов в роговом слое не образуют непрерывную липидную фазу и в промежутках между липидными участками находится водная фаза. В верхних отделах рогового слоя цементирующие липиды не выявляются, что и облегчает слущивание роговых чешуек.
Следует иметь в виду, что описанный способ образования рогового вещества при участии прототонофибрилл и кератогаалиновых зерен не является единственным. В ряде случаев ороговение идет почти без участия прототонофибрилл. Так, при образовании кутикулы волоса кератинизация происходит главным образом путем слияния аморфных гранул трихогиалина, накапливающихся в эпителиоцитах. В других случаях кератогиалиновые гранулы в эпителиальных клетках не появляются, и образование рогового вещества бывает связано лишь с усиленным синтезом фибрилл. При этом ороговевшие клетки не слущиваются. Так возникает фиброзный кератин, в котором под электронным микроскопом бывает видна выраженная фибриллярность.
Роговое вещество обладает разными физическими свойствами. Так, кератин ногтей, когтей, коркового вещества волоса и его кутикулы относятся к твердому кератину, кератин эпидермиса и мозгового вещества волоса – к мягкому кератину. В твердом кератине по сравнению с мягким содержится больше серы. Способы ороговения как в клетках с твердым, так и с мягким кератином могут быть разными.
Кератины представляют собой разнородную группу по аминокислотному составу и последовательности аминокислот в полипептидных цепочках. По надмолекулярной организации различают три разновидности кератинов: альфа-кератины со спиральным расположением полипептидных цепей; бета-кератины с линейным их расположением и гамма-кератины с неправильной укладкой полипептидных цепей. Кератины содержат большое число дисульфидных мостиков, а также водородных и ионных связей, определяющих химическую устойчивость кератинов и их механическую прочность. При этом бета-кератин содержит больше серусодержащих аминокислот, чем альфа-кератин.
По недавно созданной химической классификации кератинов эпидермальных клеток, они разделены на две группы: кислые керати-ны и основные. Всего у человека идентифицировано 19 разновидностей кератинов, каждая из которых получила свой порядковый номер. В покровном эпителии кератины построены по единому плану и имеют одинаковую вторичную структуру. Центральную часть молекулы занимает альфа-спиральный домен, состоящий из 311–314 аминокислотных остатков, прерывающийся тремя короткими неспирализованными последовательностями. Наиболее консервативен С-конец альфа-спирали, который состоит из 30 аминокислотных остатков одинаковых для всех белков промежуточных филаментов. Центральная часть альфа-спирального домена имеет семичленную периодичность в одном витке спирали. Предполагается, что три альфа-спиральных домена образуют спиральную надмолекулярную структуру. С кератиновыми молекулами могут ассоциироваться и другие белки, что приводит к модификациям их структуры. Например, филаггрин осуществляет ассоциацию филаментов в пучки.
Прочие статьи:
Листья
У листьев много различных функций, главная - это уже упоминавшийся фотосинтез, то есть химическая реакция в ткани листа, с помощью которой создаются не только органические вещества, но и кислород, который необходим для жизни на нашей план ...
Кинетика действия ферментов
Кинетические исследования ферментативных реакций необходимы не только для количественного определения ферментов и сравнения скоростей их функционирования, но, в еще большей степени, для расшифровки механизмов ферментативных реакций. В эти ...
Самоорганизация в открытых неравновесных системах
Проблема самоорганизации материальных систем в XX веке становится одной из центральных проблем науки. Существенный вклад в решение этой проблемы вносит системный и информационный подходы. Терминология, выработанная в этих областях исследо ...