Определение содержания витаминов в растительных клетках

С помощью флуоресцентной микроскопии возможно определение

содержания витаминов

в образцах, благодаря их собственной флуоресценции и с применением флуорохромов. Во многих случаях этот метод даёт лучшие результаты, чем самый тонкий химический анализ, не позволяющий, например, судить о распределении витаминов в органах и тканях. В связи с этим метод особенно широко применяется в медицине и физиологии животных.

Витамин А характеризуется светло-зелёной быстро затухающей флуоресценцией. Её можно наблюдать в свежем нефиксированном виде, но более плодотворным является метод окраски тканей с помощью флуорохромов. Флуоресцентное микроскопирование в данном случае может служить методом дифференциации витаминов А1 и А2: витамин А1 даёт характерную светло-зелёную флуоресценцию, а витамин А2 – красноватую. Различие в интенсивности флуоресценции с успехом используется для анализа смеси свободного витамина А и его эфиров.

Витамин В2 обладает собственной зелёной флуоресценцией (в некоторых животных клетках обнаружена так же жёлто-зелёная флуоресценция). Оптимум люминесценции данного вещества находится при рН от 3 до 9, что необходимо учитывать при проведении исследований. Типичная флуоресценция рибофлавина зависит от присутствия свободной 3-аминогруппы. Эта флуоресценция (максимум на 565 нм при рН 60) служит для количественного определения витамина В2. Интенсивность флуоресценции сравнивается с каким-либо стандартом (чаще всего чистый рибофлавин), она прямо пропорциональна содержанию витамина.

Витамин В1 не флуоресцирует ни в чистом виде, ни в водном растворе. Способность к сине-зелёной флуоресценции проявляет тиамин только в комплексе с носителем. При окислении витамин В1 превращается в тиохром – жёлтое вещество с интенсивно синей флуоресценцией. В щёлочном растворе тиохром очень чувствителен к свету и флуоресценция его исчезает необратимо. Свойством витамина В1 окисляться в тиохром пользуются в тесте на этот витамин: водный раствор тиамина окисляется посредством железосинеродистого калия в тиохром, флуоресценция которого определяется фотоэлектрически после экстракции тиохрома изобутиловым спиртом. Интенсивность флуоресценции зависит от щёлочности раствора и количества находящегося там тиохрома. Результаты, получаемые этим методом, находятся в полном соответствии с биологическими тестами.

Никотиновая кислота и её амид так же связаны с коллоидальным носителем. Амид никотиновой кислоты присутствует в двух коферментах: кодегидраза-1 и кодегидраза-2. Кодегидраза-2 встречается практически во всех живых клетках. Свойства его очень близки к свойствам кодегидразы-1: оба вещества бесцветны, растворимы в воде, нерастворимы в органических растворителях. Эти носители дают хорошую флуоресценцию при освещении в УФ-свете, что используется для их определения.

Витамин С в водном растворе не флуоресцирует. Только при большой концентрации аскорбиновой кислоты с коллоидным носителем появляются зелёные, довольно лабильные по отношению к ультрафиолетовым лучам капли.

Витамин К даёт типичную адсорбцию с максимумом при 234, 248, 261, 270 и 320 нм (в ультрафиолетовой области). Витамин К обладает белой флуоресценцией в свете аргоновой лампы. Н.А. Андреев и В.Н. Букин (1949) разработали количественный флуоресцентный метод определения фолиевой кислоты в клетках. Ими построена кривая распределения интенсивности в спектре флуоресценции кислоты, показано изменение интенсивности в спектре флуоресценции кислоты, показано изменение интенсивности свечения в зависимости от рН раствора. Описан метод экстрагирования кислоты, её адсорбции на активированном угле (обработанном анилином) с последующим элуированием спиртом: полученный раствор упаривают и окисляют перманганатом. Измерение интенсивности флуоресценции авторы проводят при рН 4,0-4,5, пользуясь светофильтром (470 нм), применяя в качестве стандарта раствор фолиевой кислоты концентрации 2 мл в 100 мл воды. Для полного извлечения фолиевой кислоты необходимо подвергать дополнительной ферментативной обработке продукты, которые содержат много белковых веществ. [1,3]


Прочие статьи:

Развитие клеточной теории во второй половине XIX века
С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию. Для дальнейшего развития клеточной теории существенное значение имело её распростран ...

Выводы
Таким образом, на протяжении веков менялись взгляды на проблему происхождения жизни, но наука все еще далека от ее решения. Как и сто, и двести лет назад, сегодня продолжаются споры на эту тему, причем веских аргументов в пользу какой-то ...

Солнечные часы
Всем очевидно влияние Солнца: смена времен года, суточная активность… Год, как основа нашего календаря, – это полный оборот Земли вокруг Солнца, и был заложен в календарь древними астрологами. Астрология всегда выделяла Солнце и Луну, как ...

Разделы