Природа и состав жирных кислот в мембранных липидах
Страница 1

Материалы по биологии » Строение и состав живой клетки » Природа и состав жирных кислот в мембранных липидах

Природа жирных кислот в липидах мембран зависит как от вида организма, так и от условий его существования. Наиболее часто встречающиеся жирные кислоты липидов животных, растительных и прокариотных клеток.

С увеличением числа двойных связей значительно снижается температура плавления жирных кислот (а также содержащих эти кислоты липидов) и повышается их растворимость в неполярных растворителях. Поскольку функциональная активность мембранных белков регулируется фазовым состоянием липидов мембраны (как правило, в жидком состоянии их активность выше), при снижении температуры в мембране должно повышаться содержание ненасыщенных кислот. Благодаря постоянству внутренних условий (гомеостазу) животного макроорганизма влияние температуры на жирнокислотный состав липидов обычно проявляется слабо, но, например, в липидах нижних конечностей пингвинов повышено содержание ненасыщенных жирных кислот.

В мембранах прокариот разнообразие жирных кислот довольно велико. Особенностью бактерий является наличие разветвленных и циклопропановых кислот. У некоторых грамположительных бактерий (например, Micrococcus luteus) 90% жирных кислот липидов составляют разветвленные кислоты, а ненасыщенные кислоты практически отсутствуют. Грамотрицательные бактерии содержат смесь насыщенных и ненасыщенных кислот с преобладанием С-16 и С-18 кислот, а также циклопропановые кислоты (например, лактобацилловую кислоту). Пути их биосинтеза показаны на рис. 8.

Изменение температуры существенно влияет на соотношение насыщенных и ненасыщенных жирных кислот в мембранах прокариот, при этом снижение температуры культивирования приводит к увеличению доли ненасыщенных кислот. Предельными случаями являются психрофилы, растущие при температурах, близких к 0"С, у которых присутствуют практически только ненасыщенные жирные кислоты, а также термофилы (привычная температурная среда выше 60°С) — у них все жирные кислоты липидов насыщенные.

Тем не менее состав жирных кислот фосфолипидов у бактерий при культивировании в стандартных условиях достаточно постоянен, и его можно использовать как таксономический признак — в интересах классификации или при анализе состава микробных сообществ без изолирования в чистых культурах отдельных представителей.

Для изучения структуры, состава и функции органелл необходимо, как правило, изолировать их из клетки в чистом виде. Обычно это достигается методом дифференциального центрифугирования после разрушения клеток в механических или ультразвуковых гомогенизаторах.

Кратко охарактеризуем основные процессы и органеллы (в алфавитном порядке).

Аэросомы — однослойные везикулы, мембрана которых построена только из белка. Способствуют повышению плавучести клеток, так как в них содержится газовая фаза, совпадающая по составу с газовой фазой окружающей среды.

Вакуоли — мембранные образования, служащие для поддержания тургорного давления, запасания различных веществ, а также выполняющие лизосомные функции.

Внехромосомная ДНК. В митохондриях и хлоропластах содержится ДНК, образующая нуклеоид бактериального типа. Заключенная в ней генетическая информация не дублируется в ядерной ДНК и способна к автономному выражению в белках посредством собственных систем транскрипции и трансляции (включающих рибосомы 70 S бактериального типа).

У прокариот внехромосомная ДНК организована в виде плазмид, которые могут существовать и реплицироваться автономно или в интегрированном в хромосому состоянии (например, в виде профага).

Гидрогеносомы — окружены однослойной мембраной и содержат комплекс пируватдегидрогеназ (у трихомонад).

Гистоны — представляют собой положительно заряженные (основные) белки, входящие в состав хромосом в комплексе с ДНК (обнаружены также у архебактерий).

Гликосомы — окружены однослойной мембраной и содержат ферменты гликолиза (у некоторых протозойных микроорганизмов, в частности у возбудителей сонной болезни).

Глиоксисомы — разновидность пероксисом — место локализации ферментов глиоксалатного шунта, участвующих в превращении запасных жиров в углеводы. Поэтому они тесно ассоциированы со сферосомами, жирозапасающими органеллами растительных клеток.

Страницы: 1 2


Прочие статьи:

Роль отечественных учёных в развитии микры
Велика заслуга в развитии микробиологии Мечникова. К числу важнейших работ в области микробиологии относятся его исследования патогенеза холеры человека, туберкулеза. Он является основоположником учения о микробном антагонизме, ставшем ос ...

Головной мозг.
Общая схема строения головного мозга ( рис. 19) Головной мозг Задний мозг2 Сред-ний мозг Промежуточный мозг Конечный мозг 1. продолговатый мозг 2. мозжечок 3. Варолиев мост 1. четверохолмие 2. но ...

Репликация нуклеиновых кислот
При размножении любых форм жизни (кроме вирусов РНК-типа) происходит увеличение числа молекул ДНК. У многоклеточных организмов из двух слившихся гамет получается тысячи, миллионы или миллиарды клеток тела; у бактерий и простейших из одной ...

Разделы